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Abstract

The propagation of small-amplitude modes in an inviscid but sheared mean flow inside a duct is studied numerically.

For isentropic flow in a circular duct with zero swirl and constant mean flow density the pressure modes are described in

terms of the eigenvalue problem for the Pridmore-Brown equation. Since for sufficiently high Helmholtz and wavenumbers,

which are of great interest for applications, the field equation is inherently stiff, special care is taken to insure the stability

of the numerical algorithm designed to tackle this problem. The accuracy of the method is checked against the well-known

analytical solution for uniform flow. The numerical method is shown to be consistent with the analytical predictions

at least for Helmholtz numbers up to 100 and circumferential wavenumbers as large as 50, typical Mach numbers being

up to 0.65.

In order to gain further insight into the possible structure of the modal solutions and to obtain an independent

verification of the robustness of the numerical scheme, comparison to the asymptotic solution of the problem based on the

WKB method is performed. The asymptotic solution is also used as a benchmark for computations with high Helmholtz

numbers, where numerical solutions of other authors are not available.

The bulk of the analysis concentrates on the influence of the wall lining. The proposed numerical procedure is adapted in

order to include Ingard–Myers boundary conditions. In parallel with this, the WKB solution is used to check the numerical

predictions of the typical behaviour of the axial wavenumber in the complex plane, when the wall impedance varies in the

complex plane.

Numerical analysis of the problem with zero mean flow at the wall and acoustic lining shows that the use of

Ingard–Myers condition in combination with an appropriate slip-stream approximation instead of the actual no-slip mean

flow profile gives valid results in the limit of vanishing boundary-layer thickness, although the boundary layer must be very

thin in some cases.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Normal mode analysis of small-amplitude disturbances in an annular duct with an appropriately chosen
mean flow has been much used in the problems of turbomachinery noise propagation. Although an engine
duct is not straight, the representation of sound in a duct by modes is very advantageous because of the clarity
and the theoretical insight that it provides. The first investigations for sheared mean flow were reported in the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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seminal paper by Pridmore-Brown [1]. For a long time, however, it was more practical to use uniform flow
(e.g., Ref. [2]), as the numerical needs are less demanding and acoustic modes can be studied independently
from the hydrodynamic modes. By using the multiple scales technique for slowly varying ducts it is possible to
extend the modal approach even further [3–5].

Although the mean flow in the inlet duct is almost uniform with vorticity concentrated in the thin boundary
layer, the mean flow of the by-pass duct is strongly sheared, sometimes with swirl, which requires more precise
modelling. Since in the latter case the acoustic disturbances are not irrotational any more and are coupled with
the hydrodynamic disturbances due to entropy and vorticity waves, the analysis of small-amplitude modes
becomes much more involved both computationally and theoretically.

A wealth of literature on the numerical analysis of this problem together with a detailed comparison of
various numerical approaches can be found in Ref. [6]. Of amongst more recent numerical studies, especially
with regards to swirling flows, the works by Golubev and Atassi [7], Tam and Auriault [8], Kousen [9], Nijboer
[10], Cooper and Peake [11] should be mentioned.

The aim of this work is to consider the problem of the propagation of small disturbances in an annular duct
with sheared mean flow and wall lining from the numerical point of view. The reasons for this are as follows.

Firstly, for sufficiently high Helmholtz and circumferential wavenumbers, which are of the most interest for
the applications, the field equation is inherently stiff. This means that numerical stability of the algorithms
designed to tackle this problem becomes a major issue to be taken into account. For sheared mean flows
without swirl considered in the present work this is due to the oscillatory character of the high frequency
acoustic modes and the need to accurately resolve them numerically, although in the more general case of non-
zero mean swirl the highly oscillatory behaviour of nearly convected modes may pose an even greater problem
(see, for instance, Ref. [7]).

As opposed to their acoustic counterparts, the hydrodynamic modes in a non-swirling mean flow generally
are of non-oscillatory nature [12], and the high frequency is not the major concern here. For these modes the
main issue is the presence of the critical layer centred on the radial position where the phase speed equals the
mean flow velocity. With the exception of some very special flow conditions, hydrodynamic modes are not
analytic functions in the vicinity of the critical point. As a result, their accurate numerical computation proves
to be a difficult task (see, for instance, Refs. [7,10]) and more comparisons between the theoretical and
numerical predictions is believed to be needed here.

Secondly, even for hard walled ducts only limited data on the properties of the spectrum of the Pridmore-
Brown equation currently exists in the literature and only for relatively small values of the Helmholtz number.
In particular, coverage of the properties of the hydrodynamic part of the spectrum, in our view, remains
insufficient. Also, the influence of the wall lining over the spectrum structure and the range of validity of the
slip-stream mean flow approximation in combination with the Ingard-Myers condition as a limiting model for
the mean flow velocity profiles with strong near-wall shear due to no-slip condition are not fully understood.

In order to gain further insight into these issues, we will develop a robust numerical method, valid for very
high Helmholtz numbers. Its validity will be verified against asymptotic results of the WKB type similar to
what has been proposed by Envia [13] and Cooper and Peake [11].

The properties of the hydrodynamic part of the spectrum for the sheared mean flow without swirl (i.e., what
is described by the Pridmore-Brown equation) will be studied numerically and compared with the results
of the high-frequency short-wavelength asymptotic theory recently proposed in Ref. [12]. In particular,
the asymptotic analysis shows that for sheared mean flow with non-zero wall velocity and in the absence
of lining the number of smooth hydrodynamic modes is finite and they are localized near the duct walls
(although there exists a continuous spectrum of singular modes). This result will be confirmed numerically. In
parallel with this, comparisons of the numerical predictions with the WKB solution extended to the case of
soft walls will be presented. It will be used to qualitatively assess the numerical prediction of the typical
behaviour of the axial wavenumber in the complex plane, when the wall impedance varies in the complex
plane.

The important issues of small-disturbance propagation in a non-dissipative moving medium are the
problems of the mean flow stability and causality of the modal solutions. These appear to be much more
difficult than one might think on the face of it and require special investigation [14–17]. Therefore, we decided
to leave these issues outside the scope of the present work.
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The structure of the paper is as follows: in Section 2 governing equations are derived and the main
asymptotic results obtained in Ref. [12] are briefly outlined, since they are needed for further comparisons with
the numerical results. Section 3 describes the proposed numerical procedure for integration of the modal
equations. Results of numerical analysis are presented in Section 4 which is followed by concluding remarks
summarized in Section 5.

2. Governing equations

Consider an inviscid non-heat-conducting (i.e., isentropic) compressible perfect gas flow inside an infinitely
long straight annular duct of inner radius h and outer radius d. Let x, r and y be the axial, the radial and the
circumferential coordinates, u, v and w the projections of the velocity vector on the coordinate axes x, r and y
respectively, r and p the density and the pressure (see Fig. 1). The dimensional equations for conservation of
mass, radial, circumferential, axial components of momentum and energy are
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Here t is time, g ¼ cp=cv is the ratio of specific heat capacities at constant pressure and constant volume,
respectively. The pressure, the density and the absolute temperature T satisfy the equation of state p ¼ RrT ,
R ¼ cp � cv. Assume that the total flow field is the sum of a mean base flow and small-amplitude unsteady
perturbations

ðu; v;w;r; pÞ ¼ ðu; v;w; r; pÞ þ ðeu;ev; ew; er; epÞ. (6)

If the mean flow is independent of x, y, t and its radial velocity is zero, then the following well-known mean
flow solution (see, for instance, Ref. [8])

u ¼ uðrÞ; v ¼ 0; w ¼ wðrÞ; r ¼ rðrÞ; p ¼ pd �

Z d

r

rðxÞ
w2ðxÞ
x

dx (7)
r = 1

r = s

M(r)

Fig. 1. Flow geometry.
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can be taken in order to obtain linearized Euler equations for the small-amplitude disturbance field. This mean
flow is characterized by the swirl Ox ¼ dw=drþ w=r and the circumferential vorticity (shear) Oy ¼ �du=dr.
Here pd ¼ pðdÞ is a given constant.

The resulting small-amplitude disturbances are sought in the form

ðeu;ev; ew; er; epÞ ¼ ðU ;V ;W ;R;PÞ expð�iotþ ikxþ imyÞ, (8)

where o is the excitation frequency, and k and m are the axial and circumferential wavenumbers, respectively.
The amplitudes ðU ;V ;W ;R;PÞ are unknown functions of r. They satisfy the system of equations obtained in
the work by Nijboer [10]

ilP0 þ iBP� AVr ¼ 0, (9)
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Here the prime stands for the derivative with respect to r,
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Elimination of V leads to a single differential equation for the pressure amplitude P
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In order to state boundary conditions for this equation, assume that the duct walls are treated with locally
reacting lining with complex specific impedances Zh and Zd at r ¼ h and d, respectively. According to Ingard
[18] and Myers [19], the following relations must be satisfied on the duct walls to incorporate the effects of a
vanishing boundary layer

�ioevn ¼ �ioþ u
q
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þ
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Z
, (12)

where evn is the projection of the perturbation velocity on the outwardly directed normal to the duct wall
(evn ¼ ev at r ¼ d and evn ¼ �ev at r ¼ h), Z ¼ Zd or Z ¼ Zh at r ¼ d or r ¼ h, respectively. Substitution of
Eq. (8) in Eq. (12) together with Eq. (9) gives the required boundary conditions for Eq. (11)
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The hard wall boundary condition on either of the walls is recovered in the limit Zh or Zd !1.
In the eigenvalue problem (11)–(14) the excitation frequency o and the circumferential wavenumber m are

given parameters while the axial wavenumber k is the unknown spectral variable.
In the special case of zero mean circumferential velocity w ¼ 0 and constant mean flow density r (and hence

the pressure) (11) reduces to a form of Pridmore–Brown equation
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In this case the boundary conditions are

P0 þ
ir o� kuð Þ

2
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P ¼ 0 at r ¼ h, ð16Þ
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2
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The present work studies numerically the solutions of field equation (15) with various versions of conditions
(16) and (17). The relevant numerical procedure, which has also been used to integrate the generic problem
(11)–(14), is described in the next Section. However, prior to proceeding to the numerical analysis, we briefly
summarize here the main analytic results for the eigenvalue problem (15)–(17) reported in Ref. [12].

2.1. Summary of asymptotic results

2.1.1. Acoustic modes

Introduce the non-dimensional quantities

eo ¼ od

c0
; ek ¼ kd; zh ¼ Zh= rc0ð Þ; zd ¼ Zd= rc0ð Þ,

M ¼ u=c0; Mh ¼ uðhÞ=c0; Md ¼ uðdÞ=c0; s ¼ h=d,

and let, for the sake of simplicity, the inner wall be hard, i.e., Zh ¼ 1, the pressure amplitude P be scaled by
rc20, time by d=c0, velocities by the sound speed c0, r and other distances by d. If the following short-
wavelength approximation 15eo � jmj5jekj as ek!1 is adopted, then, according to Vilenski and Rienstra
[12], the eigenvalue system (15)–(17) becomes analytically treatable in the following three limiting cases.

Quasi-hard-wall limit: The asymptotic expansion of the axial wavenumber ek when the walls of the duct are
hard is given by the series
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�
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where the integer n is a large parameter, used to number the eigenvalues and the corresponding modal
solutions, dots stand for the higher-order terms,
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If the absolute value of the outer wall impedance zd ¼ Rþ iX is sufficiently large, i.e., jzd jbz1pn=k1b1, where
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then the main-order correction due to the lining results in the expression
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which on elimination of the imaginary part of the impedance X shows that the real ekr and the imaginary eki

parts of the axial wavenumber ek follow the circle

ekr þ
k0
k1
þ

z1pn

2Rk21

� �2

þ eki �
pn

k1
þ

k�1
pn

� �2

¼
z1pn

2Rk21

� �2

(20)

if resistance R is fixed and reactance X is allowed to vary. The corresponding hard-wall wavenumber lies inside
this circle. The circle’s radius decreases with the damping R and the frequency o, but grows with the Mach
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number M and the index n. The centre of the circle is shifted to the left from the position of the hard-wall
eigenvalue ek0 by the amount of its radius for positive n and to the right—for negative n. The neighbouring
circles are shifted from one another in the vertical direction by the amount p=k1 þ Oð1=n2Þ which depends
mainly on the Mach number distribution and the hub-to-tip ratio s.

Limit of small resistance: Let m ¼ z1pn=k1, n ¼ z1k0=k1 and assume now that jmj�jX j, whereas resistance R

is small, i.e., jmjbR. Then, to main order, the real and imaginary parts of the axial wavenumber satisfy either
of the following relations:

ekr �
ek0

r ¼
�R cosð2k1ðeki �

ek0
i ÞÞ þ n sinð2k1ðeki �

ek0
i ÞÞ � R
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i ÞÞ � n sinð2k1ðeki �

ek0
i ÞÞ þ R
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if X=mo0. ð22Þ

Hence, when resistance R is kept fixed while reactance X varies, the eigenvalue ek with a sufficiently large index
n must move along the sinusoidal line. The zeros of this line coincide with the successive hard-wall eigenvaluesek0 ¼ ek0

r þ
ek0

i . For instance, if for some n40 (or no0) the corresponding eigenvalue ek0ðnÞ is taken as a starting
point at X ¼ þ1 and X is allowed to gradually vary till X ¼ �1, then moving along the line (21) (or (22),
respectively) the eigenvalue ek will terminate at the point ek0ðnþ 1Þ (or ek0ðn� 1Þ; respectively). The amplitude
of these sinusoidal lines decays as 1=n as n!1.

Surface modes: Two asymptotic solutions considered so far either correspond to the limit 15z1pn=k15R or
to its opposite z1pn=k1bR. Further analytical treatment of the generic dispersion relation which follows from
the WKB analysis is not straightforward, and the corresponding numerical analysis is preferable here. The
exception is the case of large jX j whereby two branches of acoustic surface modes can be identified. For the
first time, these were found numerically in Rienstra [20] in the uniform mean flow circular duct case. For a
ducted flow with shear the related main-order solution is

ek ¼ �izd=z1 þ � � � if X !�1 and ek ¼ izd=z1 þ � � � if X !þ1. (23)

If the wall Mach number Md ¼ 0, formulas (23) do not apply. This situation is studied numerically in what
follows.
2.1.2. Hydrodynamic modes in the absence of lining

The occurrence of a hydrodynamic mode means that at some critical point r ¼ er inside the duct the mode’s
phase speed is equal to the local mean flow speed, i.e., eo� ekMðerÞ ¼ 0. If the following analogue of the
inflection point theorem:

M 00ðerÞ
M 0ðerÞ � 1er

� � ek2
þ

m2

er2
� �

þ
2m2

er3 ¼ 0 (24)

holds, there may exist a hydrodynamic mode which is smooth at er. If otherwise, this mode develops the
logarithmic singularity in the axial perturbation velocity. The analytical study of Vilenski and Rienstra [12]
shows that in the high-frequency short-wavelength limit smooth hydrodynamic modes are such that er is
located on the walls of the duct, provided the Mach number does not vanish on the walls and its derivatives
remain Oð1Þ near er. These hydrodynamic modes have maximum/minimum on the wall and decay exponentially
away from it. Note however, that this conclusion may not be true if the wavelengths are not large. Apart from
these modes, there is also a continuous spectrum of singular hydrodynamic modes which always feature a
discontinuous third derivative, irrespective of the condition (24).

In the presence of a strongly inhomogeneous shear layer, such as, say, a viscous boundary-layer near the
wall, the existence (or absence) of hydrodynamic modes, to the authors’ knowledge, has not been established
analytically for the eigenvalue problem (15)–(17). Numerical experiments aiming to shed some extra light on
the issue are presented in what follows.
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3. Numerical procedure

The eigenvalue problem (11)–(14) was solved numerically using the following method. The field equation
(11) was first rewritten in the form of a system of two first-order ordinary differential equations

u ¼ P0; u0 ¼ �bðrÞu� gðrÞP, (25)

where bðrÞ and gðrÞ are the coefficients before P0and P in Eq. (11). For zero circumferential mean flow velocity
they are identical to bðrÞ and gðrÞ appearing in the Pridmore-Brown equation (15). To reduce the amount of
computations, these coefficients were rewritten as follows:

bðrÞ ¼
B

l
þPþ
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l
dl
dr
; gðrÞ ¼
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l2
þ

1

l
dB

dr
þ
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l
; P ¼

1

r
�

1

rA

dðrAÞ

dr
þ C,

so that their common part P could be computed only once per run. System (25) was approximated by the
following implicit finite-difference (backward Euler) scheme:

Pjþ1 � Pj

d
¼ ujþ1;

ujþ1 � uj

d
¼ �bjþ1ujþ1 � gjþ1Pjþ1 (26)

for j ¼ 0; 1; 2; 3; . . .N � 1, where d ¼ ðd � hÞ=N, rj ¼ hþ jd, bj
¼ bðrjÞ and N is a sufficiently large integer.

Since system (26) is linear, it may be solved for the unknowns ujþ1 and Pjþ1 as follows:

Pjþ1 ¼
ð1þ dbjþ1

ÞPj þ duj

1þ dbjþ1
þ d2gjþ1

; ujþ1 ¼
Pjþ1 � Pj

d
(27)

for j ¼ 0; 1; 2; 3; . . .N � 1. Formulas (27) were supplemented with the initial conditions at r ¼ r0 ¼ h

P0 ¼ 1; u0 ¼ �
B

l
þ

irA

oZh

� �
P0 (28)

and were used together with Eq. (28) to compute for a given initial guess of the spectral parameter k ¼ kn the
functions ujþ1 and Pjþ1 and the value

IðknÞ ¼
1

Q
uN þ

B

l
�

irA

oZd

� �
PN

� �
; Q ¼

Z d

h

jPjdr. (29)

Here IðknÞ measures the error in the boundary condition on the wall r ¼ rN ¼ d, the role of the parameter Q is
equivalent to the renormalization of the solution after each run in r. Generally, it was not necessary unless
very high frequencies o and circumferential wavenumbers m were used (say, for Helmholtz number equal to
80 and m ¼ 50). Since normally IðknÞa0 for an arbitrary guess value kn, global Newtonian iterations in k were
needed to insure the equality IðkÞ ¼ 0. The following formula

knþ1 ¼ kn � IðknÞ=I 0ðknÞ (30)

was used to update the value of the spectral parameter k. The amount of computations in Eq. (30) could be
reduced in comparison with the classical Newton’s method if the derivative I 0ðknÞ was approximated by the
finite difference

I 0ðknÞ �
IðknÞ � Iðkn�1Þ

kn � kn�1

(modified Newton’s method). The iteration process was continued until the difference between the two
successive values of IðknÞ became smaller than a given threshold value.

An alternative approach with the initial conditions posed on the outer wall r ¼ rN ¼ d, formulas (27)
employed in the reverse order in j and the iteration procedure organized in order to satisfy the boundary
condition on the inner wall r ¼ r0 ¼ h was also used. Although it did not have any effect on the acoustic part
of the spectrum, in the case of Pridmore-Brown equation it was found more advantageous to march from the
inner wall towards the outer wall when computing the hydrodynamic mode localized near the outer wall and
to reverse the direction of marching for the hydrodynamic mode localized near the inner wall.
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Since the present shooting method crucially depends on the solution of an initial-value problem for the
Eq. (25), some other marching algorithms were explored. The main idea here was to use higher-order
approximations, in order to achieve better computational efficiency. As explicit multistep methods cannot be
A-stable (see, for instance, Ref. [21]), only implicit schemes were considered. More specifically, for a given
ordinary differential equation, say,

y0ðxÞ ¼ f ðx; yÞ

with x and yðxÞ being its independent and dependent variables, respectively, the implicit two-stage fourth-
order Runge–Kutta method [22]

ki ¼ f xj þ cid; yj þ
X2

s¼1
aisks

� �
; yjþ1 ¼ yj þ d

X2

s¼1
bsks

with

c1 ¼
1

2
�

ffiffiffi
3
p

6
; c2 ¼

1

2
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ffiffiffi
3
p

6
; b1 ¼ b2 ¼

1

2
,

a11 ¼ a22 ¼
1

4
; a12 ¼

1

4
�

ffiffiffi
3
p

6
; a21 ¼

1

4
þ

ffiffiffi
3
p

6
,

and the following two implicit second-order accurate schemes considered in Fornberg and Driscoll [23] for
integration of stiff initial-value problems were used

yjþ1 � yj ¼
1
2
dðy0jþ1 þ y0jÞ and yjþ1 � yj ¼

1
2
d 3

2
y0jþ1 þ

1
2
y0j�1

� �
.

Here d ¼ xjþ1 � xj is the distance between the successive mesh points xj and xjþ1. The first of these two
approximations is the classical Crank–Nicolson (trapezoidal) scheme, the second scheme is its more stable
modification suggested in Ref. [24].

Although implicit Runge–Kutta methods require the solution of nonlinear equations for ki at each step
which normally limits their practical use, this complication does not arise here. In the present problem the
function f ðx; yÞ is linear, and the unknown coefficients ki can be easily found analytically.

Of these three schemes the method which allows for a larger stable step size d for the stiff problem under
consideration was preferred. Our computations showed that all three approximations work well for low and
moderate frequency acoustic modes. In cases of very large Helmholtz numbers, however, (eo � 80 and above)
Newton’s method failed to converge sometimes with these schemes for the cut-on wavenumber with the largest
absolute value.

This was not the case with the above-described implicit first-order scheme (backward Euler). It is believed
that this was due to the fact that the backward Euler scheme has less severe stability restrictions on the values
of o and k for a given step size.

As it has been already mentioned in the Introduction, another subtle computational issue associated with
system (25) is due to the existence of the critical point, say r�, where the mean flow velocity equals to the local
phase speed of the perturbation solution. At this point the coefficient bðrÞ goes to infinity and the right-hand
side of Eq. (25) is singular. As is known (see, for instance, Ref. [25]), the application of ‘‘standard’’ software
for such initial-value problems normally results in exponential overflow and is no longer possible. Thus,
special consideration of the analytical properties of the solution was needed in the construction of the
numerical algorithm.

In the case of a smooth non-swirling mean flow with shear considered in this paper the function bðrÞ behaves
like �k=ðr� r�Þ as r goes to r�, where k is a given constant. It follows from Eq. (25) that if the continuously
differentiable solution at the critical point exists it must be such that

uðr�Þ � P0ðr�Þ ¼ 0 and u0ðr�Þ ¼ ku0ðr�Þ � gðr�ÞPðr�Þ.

As a result, for a given pressure amplitude Pðr�Þ at the critical point r� we can uniquely determine its slope
uðr�Þ and curvature u0ðr�Þ, provided coefficient ka1. It is easily shown by direct computation that in the
Pridmore-Brown case considered here we have k ¼ 2 so that the last equation can be solved for u0ðr�Þ.
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Thus, if we have managed to arrive at r� by solving the initial-value problem up to the critical point and
know the value of Pðr�Þ, then it is possible to proceed beyond the critical point by a one-step numerical
method, since the solution ðP; uÞ is known and its slope ðP0; u0Þ is well defined at r ¼ r�. However, the second
derivative of the solution ðP00; u00Þ does not exist at r�, for u00ðr�Þ � P000ðr�Þ either grows logarithmically at the
critical point or is at best discontinuous, see Ref. [12]. For these reasons we use the one-step backward Euler
method (27) to resolve hydrodynamic modes, rather than the higher-order schemes mentioned above.

As we noted, at the critical point rjþ1 ¼ r� the coefficient b
jþ1 goes to infinity. When this happens, formulas

(27) reduce to the following two limiting relationships:

Pjþ1 ¼ Pj ; ujþ1 ¼ 0.

The second of these formulas coincides exactly with its continuous counterpart uðr�Þ � P0ðr�Þ ¼ 0 needed to
insure correct relationship between u0ðr�Þ and Pðr�Þ. Hence, the method (27) remains valid in the limit
bjþ1
!1.

The ability of the proposed numerical scheme to integrate accurately across the critical layer is
demonstrated in Fig. 2. It illustrates the process of convergence of the numerical solution of the Pridmore-
Brown equation for the hydrodynamic mode with the axial wavenumber ek ¼ 79:92, the linear mean flow
profile u ¼ 0:3� 0:5ðr� 1Þ, the hub-to-tip ratio s ¼ 0:6, the outer wall at r ¼ 1, Helmholtz number eo ¼ 25,
azimuthal wavenumber m ¼ 15. In this example 0:3pup0:5 and the hydrodynamic spectrum lies in the
interval 50pekp83:3. Since the velocity profile is monotonous, only one critical point and one eigenmode
corresponds to each hydrodynamic wavenumber ek. The plots shown in Fig. 2 correspond to the discretizations
with the number of mesh points N ¼ 200; 400; 800; 1600; 3200, respectively. It can be seen that all these
numerical solutions are very close to each other. A better judgment about the accuracy of the method can be
obtained from the comparison of the pressure predictions on the outer wall Pð1Þ. Since the integration
proceeded from the inner wall in the outward direction, it is the outer wall, where maximum error
accumulation could be expected. For the mesh discretizations with N ¼ 100 (not shown in Fig. 2) and
N ¼ 200; 400; 800; 1600 the relative errors for the value of Pð1Þ were found to be 29%, 4.3%, 5.7%, 4.4%,
1.1%, with the solution for N ¼ 3200 taken as a reference point.
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Fig. 2. Convergence history of the hydrodynamic pressure eigenfunction corresponding to ek ¼ 79:92, eo ¼ 25, m ¼ 15, s ¼ h=d ¼ 0:6 and

u ¼ 0:3� 0:5ðr� 1Þ. N ¼ 200—dotted line, N ¼ 400—short-dashed line, N ¼ 800—long-dashed line, N ¼ 1600—thin solid line,

N ¼ 3200—þ symbols, N is the number of mesh points.
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Table 1

WKB approximation versus numerical solution

ek (WKB) ek (num.) Error %

�49:23þ i � 23:60 �49:17þ i � 23:78 �0:06� i � 0:18
�49:34þ i � 46:67 �49:32þ i � 46:71 �0:02� i � 0:04
�49:41þ i � 62:96 �49:41þ i � 62:96 0:00� i � 0:00
�49:46þ i � 76:88 �49:47þ i � 76:87 0:01� i � 0:01
�49:50þ i � 89:53 �49:52þ i � 89:51 0:02þ i � 0:02
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Overall, we see that the method is stable and produces reliable results for the hydrodynamic part of
the spectrum, although the number of mesh points has to be kept at about 2000 in order to keep the errors
below 1%.

Comparison of numerical results with the exact solutions for the case of uniform mean flow showed
numerical solutions to be accurate at least up to four–five decimal digits for the first several hundred
eigenvalues with N � 100023000.

In the range of large Helmholtz numbers eo and circumferential wavenumber m in a non-uniform mean flow
with slip the solution was tested against the WKB approximation presented in Ref. [12]. An example of such
comparison for eo ¼ 85, m ¼ 45, s ¼ h=d ¼ 0:6 and the mean flow Mach number distribution given by the
parabola

M ¼Mmax
1þ sðr� sÞð1� rÞ

1þ sð1� sÞ2=4
(31)

with Mmax ¼ 0:5 and s ¼ 8 (corresponding to a duct wall value of Md ¼ 0:76Mmax) is presented in Table 1
which shows several first cut-off wavenumbers. The agreement between the WKB predictions [12] of the cut-
off modes and their computed values was surprisingly good. For cut-on modes the situation is similar. The
maximum error was about 6% for the wavenumber with the smallest absolute value and rapidly decreased
with increasing ek (not shown).

4. Numerical results

4.1. Ducts with hard walls

Typical plots of acoustic eigenvalues for three parabolic mean-flow velocity profiles (31) with different
extents of non-uniformity s ¼ 1; 8; 25 (corresponding to respective duct wall mean flow values of Md ¼

0:96; 0:76; 0:50�Mmax, or Md ¼ 0:4577; 0:3788; 0:2758) are presented in Fig. 3. Also shown is the uniform-
flow spectrum (s ¼ 0). These plots correspond to eo ¼ 25, m ¼ 15, s ¼ h=d ¼ 0:6. The average value of the
mean flow velocity is taken to be the same and equal to 0:4596 for all s. This is done in order to get rid of the
horizontal shift of the eigenvalue patterns for non-zero s which would be present otherwise. Qualitatively all
the plots are similar to the uniform-flow case. The only differences are the slight deviation of the first several
complex eigenvalues from the vertical direction.

Computation of the hydrodynamic part of the spectrum for the above example proves to be more difficult.
If the number of mesh points N is low (say, No3000), several real eigenvalues clustering closely to each other
can be observed. Presumably, these solutions correspond to the hydrodynamic modes with the discontinuous
third derivative in r found in Ref. [12]. As the mesh becomes more refined the number of these singular
eigenvalues rapidly decreases due to non-convergence of the Newton method for these non-smooth solutions.
As a result, only the eigensolutions with r� ¼ rh and rd are left, say with ek ¼ 25=0:3788 � 66 for s ¼ 8.

More detailed analysis of these numerical results shows that the loss of convergence of the Newton method
has the following explanation. As opposed to its continuous prototype, in the numerical problem the
permissible set of hydrodynamic eigenvalues ek ¼ eo=uðr�Þ is discrete and depends on the total number of mesh
points (equal to N þ 1). When N is small, the distance between these eigenvalues is large enough for the
Newtonian iterations to rapidly converge to each of the related eigensolutions. However, for large N
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Fig. 3. Effect of mean flow non-uniformity (31) on the acoustic part of axial wavenumber spectrum, eo ¼ 25, m ¼ 15, s ¼ h=d ¼ 0:6. The
average value of the mean flow velocity is equal to 0:4596 for all s. Key to symbols: ‘þ’ is uniform flow; ‘�’ is s ¼ 1 (Md ¼ 0:4577); ‘�’ is
s ¼ 8 (Md ¼ 0:3788); ‘)’ is s ¼ 25 (Md ¼ 0:2758).
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hydrodynamic eigenvalues ek lie very closely to each other. In this situation Newton’s method cannot
distinguish between the two neighbouring modes unless the initial prediction of ek is specified accurately
enough, in which case the convergence is restored and the lost eigensolutions are recovered. Qualitatively, the
shapes of these solutions are similar to the singular mode shown in Fig. 2.

For the above-mentioned eigenvalue ek � 66 obtained for s ¼ 8 there exist two critical points r� ¼ rh ¼ 0:6
and r� ¼ rd ¼ 1 with duct wall Mach numbers Mh ¼Md ¼ 0:3788. Two eigenfunctions correspond to this
eigenvalue. One of them is localized near the inner wall r ¼ 0:6 and the other one near the outer wall r ¼ 1: In
agreement with the asymptotic theory discussed in Section 2, both of these modes have smooth derivatives for
horod. They are plotted in Fig. 4. Note, that, since the field equation is not symmetric with respect to the
mid-radius r ¼ 0:8, the eigenfunctions shown in Fig. 4 are also not symmetric about this point.

In the case of the multiplicity of the eigenvalue being equal to two, the eigenfunction which is localized near
the outer wall can be found by imposing initial conditions (28) at the inner wall and satisfying the remaining
boundary condition on the outer wall via the Newtonian iterations (29), (30). The other eigenfunction can be
found by the same procedure, but with the roles of inner and outer wall reversed.

If the wall Mach number is gradually decreased with the average mean flow Mach number being fixed,
these hydrodynamic eigenfunctions become more compactly localized near the duct walls. This situation is
illustrated in Fig. 5, where two eigenmodes are shown, each corresponding to the parabolic mean-flow velocity
profile (31) with Mmax ¼ 0:5 for s ¼ 8 and Mmax ¼ 0:6267 for s ¼ 100, respectively, corresponding to Md ¼

0:5 and 0:2�Mmax, i.e., Md ¼ 0:3788 and 0:1253. The average mean flow Mach number is equal to 0:4596 in
both cases. For a mean-flow profile without near-wall non-uniformities of the boundary-layer type no new
hydrodynamic modes were found numerically even for very small Mh.

4.2. Soft-wall solutions

This section aims to study the impact of the near-wall shear-layer gradient on the behaviour of modal
solutions in a hollow duct. The following boundary-layer-type mean-flow velocity profile is taken

M ¼Mmax tanhðað1� rÞÞ for 0prp1. (32)
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Note that M 0ð0Þ is not exactly zero but this is not a problem for the large values of a that will be considered.
The parameter a40 controls the steepness of the mean velocity profile near the duct wall r ¼ 1. Apart from
the limiting case of a ¼ þ1 which corresponds to the uniform mean flow, three flow situations with a ¼ 500,
250 and 50 are considered. They correspond to the near-wall ‘‘boundary-layer thickness’’ D of approximately
0:5%, 1:1% and 5:3% of the total duct radius, with the rest of the mean flow being virtually uniform. Here the
‘‘boundary-layer thickness’’ D is defined as the distance from the wall to the radial position r ¼ D, where the
local velocity is equal to 99% of the ‘‘free stream velocity’’ Mmax. As in Rienstra [20], maximumMach number
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Mmax ¼ 0:5, Helmholtz number eo ¼ 5 and m ¼ 1 are used throughout this section. The typical acoustic
wavelength is thus 2pd=eo � 1:26d.

Fig. 6 shows typical trajectories of the axial wavenumber ek when the reactance X of the specific impedance
zd varies from minus to plus infinity while its resistance remains fixed and relatively large (R ¼ 2). The case of
the uniform mean flow and two boundary-layer profiles (32) with a ¼ 250 and 50 are depicted. For the part of
the acoustic spectrum shown in Fig. 6 the quantity z1pn=k1 � 0:21n. Hence, with the exception of the first few
indices, n holds the relation Rbz1pn=k1b1. As a result, in agreement with the theoretical prediction (20),
most of the axial wavenumber trajectories are close to the circles whose centres are shifted slightly to the left
from their hard-wall values in the upper half-plane ek (positive n) and to the right in the lower half-plane
(negative n). As predicted by the theory, for the uniform mean flow and the mean velocity profile with
thin near-wall shear-flow sublayers (a ¼ 250) the radii of these circles slowly grow with n (i.e., away from the
real axis).

If the shear flow region is relatively thick, as is the case with a ¼ 50 in Fig. 6c, the opposite tendency prevails
and the circles which are further away from the real axis have smaller radii than in the zero mean flow case
studied in Ref. [20]. The results depicted in Fig. 6c for a ¼ 50, do not contradict the proposed theory, since
the theory assumes that wall Mach number Md is non-zero. This places a restriction on the applicability of
formula (20) for boundary-layer profiles.

Comparison of the wavenumber trajectories in Figs. 6a–c highlights the following important issue. When
the boundary-layer thickness is small, the Ingard-Myers boundary condition can be used in combination with
the ‘‘inviscid approximation’’ of the mean-flow profile with non-zero wall velocity (Fig. 6a), instead of the
actual ‘‘boundary-layer’’ mean-flow velocity profile which satisfies the no-slip condition (Fig. 6b). This is an
important and well-known computational feature of the Ingard–Myers boundary condition which saves the
need of mesh refinement in the thin near-wall sublayer in order to resolve large mean flow gradients there.
However, there arises the question about the range of validity of the approach based on the substitution of
the mean flow profile with zero wall velocity by an appropriate slip-stream profile, provided that the
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Ingard–Myers boundary condition is imposed on the wall. Figs. 6a and c demonstrate that although the
described approach is accurate in the limit of vanishing boundary-layer thickness, the numerical results based
on its application can differ perceptibly from the results obtained for a mean flow profile with vanishing wall
velocity even when the boundary-layer thickness is as small as several percents of the free-field wavelength. As
it will become clear from the discussion of the results shown in Figs. 7 and 8, the situation gets even worse
when the real part of the wall impedance becomes small. Hence, caution is needed in interpretation of the
results based on slip-stream mean flow profile approximations.

Fig. 7 shows the trajectories followed by the axial wavenumber ek as X varies from minus to plus infinity for
R ¼ 0:5. Now in the uniform-flow case for almost all n holds the inequality z1pn=k1bR. As a result, the
number of circular trajectories reduces to only four and two slowly decaying vertical sinusoidal lines (21) and
(22) can be observed in the upper and lower half-planes as ImðekÞ ! 	1, respectively (Fig. 7a). These lines
smoothly merge with the horizontal surface-mode trajectories given by solution (23) which is valid when
ReðekÞ ! 	1. Estimates of the ImðekÞ for surface modes based on formulae (23) give an approximate value of
	8:67 which is reasonably close to the computed value of 	9:05 for large ReðekÞ. However, already for the
mean-flow velocity profile with a very thin near-wall sublayer shown in Fig. 7b (a ¼ 500) the eigenvalue
pattern features substantial differences from its uniform-flow counterpart. It can be seen that only the lower
surface-mode branch remains in Fig. 7b. As opposed to the uniform-flow case, the imaginary part of the
surface-mode eigenvalue does not remain finite for large X but goes to zero. In the limit X !1 the surface
mode becomes close to a hydrodynamic mode which is localized near the duct wall and convected with almost
zero phase velocity. As the boundary-layer thickness increases (Fig. 7c), the eigenvalue pattern deviates further
away from its uniform-flow prototype and becomes structurally similar to the corresponding contour plot with
zero mean-flow Mach number studied in Ref. [20].

Computations with the profiles of the boundary-layer type reveal the appearance of real-valued
hydrodynamic modes which number grows with mesh refinement. These modes can be seen in Figs. 7b, c
and also in Fig. 8. Since it has been shown already that the proposed numerical scheme is able to integrate
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across the critical layer and gives convergent solutions for hydrodynamic modes, the hydrodynamic modes
presented in Figs. 7 and 8 are a genuine feature of the Pridmore-Brown equation and not a shortcoming of the
numerical method. The reason why the number of numerically found hydrodynamic modes must grow with
mesh refinement is as follows. The axial wavenumbers ek which correspond to hydrodynamic modes of the
Pridmore-Brown equation are given by the relationship eo� ekuðr�Þ ¼ 0. As r� varies continuously between
the inner and the outer walls, ek changes continuously in the interval eo=umaxpekpeo=umin. However, if
the independent variable r is allowed to vary only over a discrete set of N þ 1 points rjþ1 ¼

sþ jd; j ¼ 0; 1; 2; 3 . . .N, the equation for ek can also have only a finite set of discrete solutions. Its total
number is controlled by the mesh discretization parameter N. As the number of mesh points grows, so does the
number of critical points and, as a result, the number of associated eigenvalues ekðr�Þ.

Although further decrease of the real part of the wall impedance R has little effect on axial wavenumber
contours for the uniform flow, the trajectories of ek for the boundary-layer mean flow profiles undergo
substantial structural changes as R is reduced from 0:5 to 0:2 (see Fig. 8). One remarkable feature of the
eigenvalue patterns obtained for the boundary-layer type mean flow profiles and low R is that as the imaginary
part of the wall impedance X varies from minus to plus infinity one of the lower half-plane cut-off acoustic
modes gradually evolves into a hydrodynamic mode.

The hydrodynamic modes obtained for rigid walls move off the real axis if the imaginary part of the wall
impedance is allowed to vary from minus to plus infinity. Our computation shows that for a ¼ 50 (‘‘thick
boundary layer’’) these modes are shifted below the real axis, whereas for a ¼ 500 (‘‘thin boundary layer’’)
they are shifted into the upper half-plane. Two typical trajectories of such modes are shown in Fig. 7b and 8c
for a ¼ 500 and 50, respectively. In the former case the modal wavenumber ek follows a circular trajectory and
returns to its starting value. In the latter case the trajectory is not closed and the limiting values of ek for
X ¼ þ1 and X ¼ �1 differ. Variation of resistance R in the range 0:2pRp2:0 for fixed X and a did not
result in the change of the orientation of the hydrodynamic spectrum with respect to the real axis.
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If both former modes are to be interpreted as right-running, it would imply that the mode is unstable for the
thicker boundary layer and stable for the thinner boundary layer. Although speculative (we do not know if we
can speak of the same mode), it is worth noting that this is opposite to the trends reported by Michalke [26,27]
for stability of free shear layers. Here a thicker shear layer stabilizes the perturbation. Further study of
stability and causality issues for these modes is needed.

5. Conclusions

A robust numerical algorithm for determination of duct eigenmodes in sheared mean flows was developed.
For sheared mean flows it was tested against existing data and was shown to be capable of handling very high
frequencies.

Existing analytical theory based on the WKB approach was found to be in excellent qualitative agreement
with the numerical study which also made it possible to bridge the gap in the qualitative behaviour of the
solution, in the cases where the theoretical data was not available.

The obtained results show that for the mean flow profiles with non-zero wall Mach numbers there are two
hydrodynamic eigenmodes (one for each wall) which are smooth inside the flow region, but have a critical
point on the wall. Each of these modes is localized near the corresponding wall of the duct and rapidly decay
as the radial distance from the wall increases. Apart from these two, there is a continuum of hydrodynamic
modes with the critical point inside the flow region (Fig. 2). These modes are singular inside the flow region,
and their pressure amplitude has only two continuous derivatives at the critical point.

For the boundary-layer mean-flow profiles which satisfy the no-slip condition our numerical analysis
suggests the possibility of the existence of the continuous unbounded hydrodynamic spectrum. This spectrum
is real-valued for rigid wall boundary conditions and is shifted into the upper or the lower part of the complex
wavenumber plane when the imaginary part of the wall impedance varies from minus to plus infinity with its
real part being fixed. Preliminary computations suggest that the direction of this shift is controlled by the
properties of the mean flow velocity profile. However, further analysis is needed.
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